3.Afinitas ElektronAfinits elektron adalah besarnya energi yang di hasilkan atau di lepaskan apabila suatu atom menarik sebuah elektron. Afinitas elektron. Afinits elektro dapat di gunakan sebagai ukuran mudah tidaknya suatu atom menangkap elektron semakin besar energi yang di lepas ( Afinitas Elektron ) menunjukkan bahwa atom tersebut cenderung menarik elektron menjadi ion negatif
4.Keelektronegatifan
Adalah kecendrungan suatu atom dalam menarik pasangan elektron yang di gunakan bersama dalam membentuk ikatan.makin besar keelektronegatifan suatu atom, makin nudah menarik pasangan elektron ikatan, atau gaya tarik elektron dari atom. Skala keelektronegatifan di dasarkan kepada gaya tarik terhadap elektron relatif
MAKALAH KIMIA | Ikatan Kimia
A. Kestabilan Atom1. Membentuk IonDalam membentuk ion suatu atom akan melepas atau mengikat elektron. Untuk mencapai kestabilan, atom-atom yang mempunyai energi ionisasi yang rendah cencerung melepaskan elektron, sedangkan atom-atom yang mempunyai afinitas elektron yang besar cenderung mengikat elektron.
Contoh :
Atom 17 cl : 2, 8, 7 ( Konfigurasi tidak stabil ) Agar stabil cara yang memungkinkan adalah menjadikan konfigurasi elektron seperti 18 Ar : 2, 8, 8 Dengan mengikat sebuah elektron menjadi cl – → 17cl + e– cl –
( 2, 8, 7 ) (2, 8, 8 ) Proses perangkapan itu terjadi karena afinitas atom clorin besar
2. Menggunakan pasangan elektron bersama
Atom-atom yang sukar melepas elektron atau mempunyai energi ionisasi yang tinggi dan atom yang sukar menarik elektron atau mempunyai afinitas elaktron yang rendah mempunyai kecenderungan untuk membentuk pasangan elektron yang di pakai bersama
B. Ikatan ion
”Ikatan ion terjadi karena adanya gaya tarik-menarik elektrostatis antara ion positif dengan ion negatif”. Unsur-unsur logam umumnya mempunyai energi ionisasi yang rendah, sedangkan unsur-unsur nonlogam mempunyai afinitas elektron yang tinggi, dengan demikian dapat di katakan bahwa astara unsur-unsur logam dengan unsur-unsur nonlogam umumnya akan membentuk ikatan ion.
Contoh :
Senyawa NaCl
“Na : 2, 8, 1
17 cl : 2, 8, 7
Atom Na akan melepas sebuah elektron
Na → Na + + e–
Atom cl akan mengikat sebuah elektron yang di lepaskan oleh atom Na tersebut sehingga menjadi cl → + + e– cl– setiap ion Na + menarik sebuah ion cl- membentuk senyawa netral Na cl Na+ + cl– → Na cl
C. Ikatan Kovalen1. Ikatan KovalenUntuk menggambarkan bagaiman ikatan kovalen terjadi di gunakan rumus titik elektron ( struktur lewis ). Menggambarkan peranan elektron valensi dalam mengadakan ikatan
Contoh :1. ,H : 1 ( Elektron Val. 1 ) Dilambangkan dengan : H.
2. 7N : 2,5 ( Elektron Val. % ) Dilambangkan dengan : N
3. 8O : 2,6 ( Elektron Val, 6 ) Dilambangkan dengan : O
2. Ikatan Kovalen KoordinasiIkatan Kovalen Koordinasi umumnya terjadi pada molekul yang juga mempunyai ikatan kovalen.
3. Menggambarkan rumus titik elektron ( Lewis ) untuk molekul poliatom, beberapa catatan yang dapat berguna dalam meramalkan strujtur lewis dari molekul yang beratom banyak.- Semua elektron terluar ( elektron Valensi ) dari masing-masing atom yang berikatan harus di hitung
- Umumnya atom-atom dalam struktur lewis akan mempunyai delapan elektron valensi, kecuali atom hidrogen yang hanya mempunyai 2 elektron (duplet).
- Jumlah elektron yang do terima oleh suatu atom akan sama dengan yang di berikan, kecuali terjadi ikatan koordinasi yaitu suatu yang hanya nenberi atau menerima saja pasangan elektron.
- Umumnya dalam struktur lewis semua elektron merupakan pasangan termasuk pasangan elektron bebas ( Tidak untuk berikatan)
4. Penyimpangan Kaidah OktetBeberapa molekul kovalen mempunyai struktur lewis yang tidak oktet atau duplet. Struktur demikian dapat di benarkan karena fakta menunjukkan adanya senyawa tersebut, misalnya Co dan Bf3. Pada umunya molekul yang mempunyai jumlah elektron valensi ganjil akan mempunyai susunan tidak oktet, misalnya N2O dan PCls
5. Ikatan campuran Ion atau kovalenDidalam suatu molekul kadang-kadang terjadi ikatan kovalen dan ikatan ion sekaligus. Bahkan dapat pula terjadi ikatannya merupakan ikatan ion, ikatan kovalen dan ikatan koordinasi. Dalam hal ini untuk menggambarkan struktur lewis-nya harus jelas ion positif dan negatifnya
6. Ikatan kovalen polar dan non polar
Terjadinya kutub listrik dalam ikatan kovalen disebut dengan peristiwa polaritas ikatan. Peristiwa itu di sebabkan adanya perbedaan kekuatan gaya tarik terhadap pasangan elektron yang di gunakan bersama. Besarnya kekuatan gaya tarik elektron dari suatu atom dinyatakan sebagai keelektronegatifan. Atom mempunyai harga keelektronegatifan labih besar akan menarik pasangan elektron lebih dekat padanya, sehingga atom tersebut menjadi negatif daripada atom tersebut yang kurang kuat gaya tariknya. Makin besar perbedaan harga keelektronegatifan antara kedua atom yang berikatan, makin polar ikatannya. Atom-atom yang tidak mempunyai perbedaan keelktronegatifan, ikatannya merupakan ikatan nonpolar misalnya molekul O2, N2, H2 dan cl2
7. Ikatan Logam
Gaya tarikan inti atom-atom logam dengan larutan elektron mengakibatkan terjadinya ikatan logam. Adanya elektron yang dapat bergerak bebas dari suatu atom ke atom yang lain menjadikan logam sebagai penghantar yang baik.
MAKALAH KIMIA | Hukum-hukum dasar kimia
A. Hukum Kekekalan MassaAntonie Laurent Lavoiser melakukan penelitian terhadap logam cair yang berwarna putih perak dengan oksigen untuk membentuk merkuri oksida yang berwarna merah. Maka Lavoiser menemukan hukum kekekalan Massa atau lavoiser yang menyatakan bahwa massa total zat-zat sebelum reaksi akan selalu sama dengan massa total zat-zat hasil reaksi.
Contoh soal :1. Logam Magnesium seberat 4 gram di bakar dengan oksigen akan menghasilkan magnesium oksida. Jika massa oksigen yang digunakan 6 gram, maka massa magnesium oksida yang di hasilkan dapat di hitung sebagai berikut :
Massa zat-zat sebelum reaksi = massa zat-zat hasil reaksi
M Magnesium oksida = m Magnesium + m oksida
= 4 gram + 6 gram
= 10 gram
B. Hukum perbandingan tetap ( Hukum Proust )Berdasarkan proses terbentuknya, senyawa adalah gabungan dua unsur atau lebih unsur dengan perbandungan tertentu dan tetap. Melalui percobaan dengan membandingkan massa belerang dengan tembaga adalah 1 : 2, dapat di simpulkan :
- Setiap senyawa tertentu selalu ( tersusun ) mengandung unsur-unsur yang sama
- Perbandingan massa unsur-unsur dalam senyawa selalu tetap, pernyataan ini deikenal sebagai hukum perbandingan massa ( Hukum Proust )
C. Hukum perbandingan volume dan Hipotesis Avogadro
1. Hukum Perbandingan volume
Di kemukakan oleh ilmuan perancis Joseph Louis Gay Lussac ( 1778 – 1850 ) dengan percobaanya tentang volum gas yang terlihat sebagai reaksi. Setiap satu satuan volum gas hidrogen bereaksi dengan satu satuan vo,um gas clorin akan menghasilkam dua satuan volum gas hidrogen klorida. Setiap dua satuan volum gas hidrogen bereaksi dengan satu satuan volum gas oksigen akan menghasilkan dua satuan volum uap air. Dari percobaan tersebut, Gay Lussac berkesimpulan bahwa :
Volume gas-gas yang bereaksidan volume gas-gas hasil reaksi bila di ukur pada suhu dan tekanan yang sama berbanding sebagai bilangan bulat dan sederhana ( Hukum Perbandingan volum Gay– Lussac)
2. Hukum Avogadro dan Hipotesis Avogrado
Hukum Avogadro berpendapat bahwa satuan terkecil dari suatu zat tidaklah harus atom, tetapi dapat merupakan gabungan atom yang di sebut molekul, 1 molekul gas hidrogen + ½ molekul oksigen + ½ molekul oksigen → 1 molekul air. Berdasarkan hal tersebut, maka avogadro membuat hipotesis yang di kenal dengan hipotesis avogadro yang menyatakan bahwa :
"Pada suhu dan tekanan yang sama semua gas yang volumnya sama akan mengandung jumlah molekul yang sama"
Avogadro yang mengemukakan pola hubungan antara perbandingan volum gas-gas yang bereaksi yaitu :
"Jika di ukur pada suhu dan tekanan yang sama perbandingan volum gas yang terlibat dalam reaksi sama merupakan angka yang bulat dan sederhana".
MAKALAH KIMIA | Perhitungan Kimia dan Persamaan reaksi
A. Perhitungan kimia ( Stoikiometri )
adalah bagian dari ilmu kimia yang membahas tentang perbandingan massa unsur-unsur dalam senyawa termasuk di dalamnya pembahasan tentang massa unsur-unsur dalam rumus dan reaksi kimia.
1). Penentuan rumus empiris dan rumus molekul
Rumus empiris menunjukkan perbandingan jumlah atom-atom yang terdapat dalam suatu senyawa. Perbandingan itu di nyatakan dalam bilangan bulat terkecil, bilangan ini di dapat dari analisis terhadap senyawa itu dan di nyatakan dalam mol atom-atom penyusunnya.
Contoh :
1. Suatu karbon mengandung unsur C, H, dan O. pada pembakaran 0,29gr senyawa itu di peroleh 0,66gr CO2 dan 0,27gr H2). Bila massa molekul relatif senyawa itu adalah 58 tentukan rumus molekulnya
Jawab :
Cara 1 : Misal senyawa tersebut adalah CxHy)2. maka pada pembakaran trjadi reaksi C x Hy O2 + Oz → CO2 + H2O
Massa C dalam C x Hy Oz = Massa C dalam 0,66gr CO2 Hasil pembakaran.
= 1 x 12 x 0,66
44
= 0,18gr.
Massa H dalam C x Hy Oz = massa H dalam 0,27gr H2o hasil pembakaran
= 2 x 1 x 0,27gr
18
= 0,03gr
Massa O dalam C x Hy Oz = massa Cx Hy Oz – ( massa C + massa H )
= 0,29 – ( 0,18 + 0,03 )gr
= 0,08gr
nC : nH : nO = mc : mH : mO
= 0,18 : 0,03 : 0,08
= 0,015 : 0,03 : 0,05
= 3 : 6 : 1
Jadi rumus empiris senyawa tersebut adalah C3 H6 O
Jika rumus molekul senyawa di angga ( C3 H6 O ) dengan massa rumus 58, maka,
Mr ( C3 H6 O ) = ( 36 + 6 + 16 ) n
58 = 58 n
n = 1
Jadi, rumus molekul senyawa tersebut adalah 1
2. Persentase Unsur dalam senyawa
Rumus kimia menunjukkan jumlah atom-atom penyusun suatu zat. Oleh karena itu massa atom suatu unsur sudah tertentu, maka rumus kimia tersebut dapat pula di tentukan persentase atau komposisi masing-masing dalam suatu zat.
Contoh soal :
Tentukan komposisi masing-masing unsur dalam senyawa AL2 O3(Ar Al=27,0 = 6)
Jawab :
Misalnya AL2 O3 sejumlah 1 mol, berarti massanya=102gr ( mr AL2 O3 = 102 )
Setiap 1 mol AL2 O3 mengandung 2 mol AL = 2 x 27
= 54
Maka, persentase massa AL dalam AL2 O3 = 54gr x 100%
102gr
= 53,94%
Setiap 1 mol AL2 O3 mengandung 3 mol atom O = 3 x 16
= 48gr
Persentase massa O dalam AL2 O3 = 48 x 100%
102
= 46,06%
Atau,
Persentase massa O dalam AL2 O3 = (100 – 53,94)%
= 46,06%
Dari contoh di atas, maka di dapatkan rumus :
Massa A dalam p gram Am Bn = m x Ar A x p gram Mr Am Bn |
B. Persamaan reaksi
Zat yang mengalami perubahan di sebut zat pereaksi ( reaktan ) dan zat hasil perubahan di sebut Hasil reaksi ( produk )
- Persamaan reaksi menggambarkan rumus kimia zat-zat pereaksi atau reaktan dan zat hasil reaksi yang doi batasi dengan tanda panah.
- Syarat-syarat persamaan reaksi setara adalah :
- pereaksi dan hasil reaksi di nyatakan dengan rumus kumia yang benar
- memenuhi hukum kekekalan massa yang di tunjukkan oleh jumlah atom-atom sebelum reaksi ( di belakang tanda panah ).
- wujud za-zat yang terlibat reaksi harus di nyatakan dalam tanda kurung setelah rumus kimia
Makalah Kimia - Sel Elektrokimia
1. Reaksi Redoks Spontan.
Adalah reaksi redoks yang berlangsung serta merta
2. Reaksi Volta.
Elektroda tempat terjadinya reduksi di sebut katode, sedangkan tempat terjadinya oksidasi di sebut anode. Untuk menetralkan muatan listrik, maka labu A dan labu B di hubungkan oleh suatu jembatan garam yaitu larutan garam ( Macl atau kNO3.
3. Notasi Sel Volta.
Susunan suatu sel volta di nyatakan dengan suatu notasi singkat yang di sebut juga diagram sel. Misalnya : Zn Ι Zn 2+ ΙΙ Cu 2+ Ι Cu. Anode di gambarkan pada bagian kirin sedangkan katode di sebelah kanan. Pada notasi ini terjadi oksidasi 2n menjadi Zn 2+, sedangkan anode Cu 2+ mengalami reduksi menjadi Cu. Dua garis sejajar (ΙΙ) yang memisahkan anode dan katode menyatakan jembatan garam, sedangkan garis tunggal menyatakan batas abtar fase ( 2n padatan, sedangkan Zn 2+ dalam larutan, Cu 2+ dalam larutan sedangkan Cu padatan )
4. Potensial Elektrode Standar (E).
Selisih potensial di sebut potensial sel dan di beri lambang Esel. Potensial sel di sebut juga gaya gerak listrik ( ggl = emf atau elektromotif force ) Tekanan gas Ιatm di sebut potensial sel standar dan di beri lambang Eºsel
- Potensial Elektrode. yaitu beda potensial elektrode terhadap elektrode hidrogen. Potensial elektrode hidrogen = ) volt. Potensial elektrode sama dengan potensial reduksi, adapun potensial oksidasi sama nilainya dengan potensial reduksi, tetapi tandany berlawanan.
- Potensial sel Eºsel = Eº (+) – Eº (– )
- Katode (reduksi) adalah elektrode yang mempunyai harga Eº lebih besar (lebih positif) sedangkan anode ( oksidasi ) adalah yang mempunyai Eº lebih kecil ( Lebih negatif )
5. Potensial Reaksi Redoks.
Reaksi oksidasi adalah jumlah dari potensial setengah reaksi reduksi dan setengah reaksi oksidasi.
6. Reaksi keaktifan logam.
Yaitu susunan unsur-unsur logam berdasarkan potensial elektrode standarnya. Makin tinggi kedudukan suatu logam dalam deret suatu volta
- Logam makin rekatifan ( mudah melepas elektron )
- Logam merupakan reduktor yang semakin kuat
Sebaliknya, makin rendah kedudukan logam dalam deret volta
- Logam makin kurang rekatif ( Makin sukar melepas elektron )
- Logam merupakan oksidator yang semakin kuat
7. Beberapa sel Volta komersial
- Aki. Jenis baterai yang banyak di gunakan ubtuk kendaraan bermotor
- Baterai kering
- Baterai alkaline
- Baterai Nikel – Kadmium
- Baterai kerak oksida
- Baterai litium
- Sel bahan bakar
MAKALAH KIMIA - SEL ELEKTROLIS →
Kebalikan dari sel elektrokimia
Dalam sel elektrolisis, Listrik di gunakan untuk melangsungkan reaksi redoks tak spontan. Jadi sel elektrolisis merupakan kebalikan dari sel volta
- Susunan Sel Elektrolisis. Tidak memerlukan jembatn garam, komponen utamanya yaitu sebuah wadah elektrode, elektrolit dan sumber arus searah
- Reaksi-reaksi elektrolisis. Tidak menuliskan reaksi elektrolisis laritan elektrolit. Faktor-faktor yang di pertimbangkan antara lain :
- Reaksi yang berkompetisi pada tiap-tiap elektrode (a) Spesi yang mengalami reduksi di katode adalah yang mempunyai potensial elektrode lebih positif (b) Sepsi yang mengalami oksidasi dianose adalah yang mempunyai potensial elektrode lebih negatif
- Jenis Elektrode, apakah innert atau aktif. Elektrode innert adala elektrode yang tidak terlibat dalam reaksi. Elektrode innert yang sering di gunakan yaitu platina dan grafit
Overpotensial
- Reaksi di katode. Jika kation berasal dari logam-logam aktif maka airlah yang adan tereduksi
- Reaksi-Reaksi di anode
Logam mempunyai potensial oksidasi lebi besar daripada airn atau anion sisa asam. Jika anode tidak terbuat dari pt, An atau grafit maka anode akan teroksidasi. Pt, Au, atau grafit termasuk elektrodainnert atau sukar bereaksi. Jika anode termasuk innert maka reaksi anode tergantung pada jenis anion dalam larutan. Anion sisa oksi mempunyai potensial oksidasi lebih negatif daripada air. Anion-anion seperti itu sukar di oksidasi sehingga air yang teroksidasi. Jika anion leboh mudah di oksidasi daripada air, seperti Br– dan I– maka anion itulah yang teroksidasi.
Hukum-hukum Faraday
Hukum Faraday I : Massa zat yang di berikan pada elektrolisis (G) berbanding lurus jumlah listrik yang di gunakan (Q)
G = Q Jumlah muatan listrik (Q) sama dengan hasil kali dari kuat arus (I) dengan waktu (t).
Q = it berdasarkan persamaan di atas dapat di tuliskan sebagai berikut :
G = ME
Hukum Faraday II :
Massa zat di bebaskan pada elektrolisis ( G ) berbanding lurus dengan massa ekivalen zat itu ( ME ).
G = ME
Dari penggabungan hukum faraday I dan II menghasilkan persamaan, dan dapat di nyatakan sebagai berikut :
Keterangan :
G = it x ME G = Massa zat yang di bebaskan (dalam gram)
96.500 i = kuat arus (Dalam Ampere)
t = waktu (Dalam Sekon)
ME = Massa Ekivalen
Massa Ekivalen dari unsur-unsur logam sama dengan massa atom rrelatif (Ar) di bagi dengan bilangan oksidasinya (Biloks)
ME = Ar
Biloks
Maka perbandingan massa zat-zat yang di bebaskan sama dengan perbandingan massa ekivalennya.
Stoikiometri Reaksi Elektrolisis
Stoikiometri reaksi elektrolisis di dasarkan pada anggpan bahwa arus listrik adalah aliran elektron
IF = 1 mol elektron = 96.500 coulomb. Selama 1 detik membawa muatan sebesar it coulomb. Oleh karena 1 mol elektron = 96.500 coulomb, maka dalam it coulomb terdapat it
96.500
Penggunaan Elektrilisis dalam industri
a). Produksi zat
Kloron dan natrium hidroksida di buat dari elektrolisis larutan Natrium Klorida. Proses ini di sebut proses Klor – Alkali dan merupakan proses industri yang sangat penting. Ruang katode dan anode di pisahkan dengan berbagai cara sebagai berikut :
- Sel Diafragma
- Sel Merkuri
- Pemurnian Logam
Contoh terpenting dalam bidang ini adalah pemurnian tembaga. Tembaga kotor di jadikan anode, sedangkan katode di gunakan tembagamurni. Larutan elektrolit yang di gunakan adalah larutan Cu SO4. selama elektrolisis, tembaga dari anode terus - menerus di larutkan kemudian di endapkan pada katode.
b). Penyepuhan
Penyepuhan (Elektroplating) di maksudkan untuk melindungi logam terhadap korosi atau untuk memperbaiki penampilan. Logam yang akan di sepuh di jadikan katode sedangkan logam penyepuhnya sebagai anode. Kedua elektrode itu di celupkan dalam larutan garam dari logam penyepuh. Sedangkan paa sendok besi ( Baja ) sedok di gunakan sebagai katode. Sedangkan anode adalah perak murni. Larutan elektrolitnya adalah larutan perak nitrat. Pada latode akan terjadi pengendapan perak, sedangkan anode perak terus-menerus larut. Konsentrasi in Ag+ dalam larutan tidak berubah.
Katode ( Fe ) : Ag+ + e → Ag
Anode ( Ag ): Ag → Ag+ + e
Ag ( anode ) → Ag ( Katode )
MAKALAH KIMIA | PROTEIN
1. Asam Amino
Asam Amino adalah suatu golongan senyawa karbon yang setidak2nya mengandung satu gugus karboksil dan satu gugus amino. Gugus amino adalah gugus pembeda antara Asam amino yang satu drngan yang lainnya.
2. Ion Zwitter
Yaitu molekul yang dapat mengalami reaksi asam basa intramolekul membentuk suatu ion dipolar.
3. Asam Amino Esensial dan Non Esensial
- Asan Amino Esensial → Asam2 Amino yang tidak dapat disintesis dalam tubuh
- Asam Amino Non Esensial → Asam yang dapat disintesis dalam tubuh
Kekurangan protein dapat menyebabkan retardasi ( keterbelakangan ) fisik maupun mental
4. Ikatan Peptida
Yaitu ikatan yang mengaitkan dua molekul asam amino dan senyawa yang di bentuk di sebut dipeptida.
5. Struktur Protein
- Struktur Primer → Urut-urutan asam amino dalam rantai polipeptida yang menyusun protein
- Atruktur Sekunder → Berkaitan dengan bentuk dari suatu rantai polipeptida
- Struktur Tersier → Protein merupakan bentuk tiga dimensi dari suatu protein
6. Hidrolisis Protein
Suatu polipeptida atau protein dapat mengalami hidrolisis jika di panaskan dengan asam klorida pekat, sekitar 6 m
7. Denaturasi protein
Misalnya suatu protein di panaskan secara perlahan-lahan sampai kira-kira 60º – 70ºC. lambat laun protein itu akan menjadi keruh dan akhirnya mengalami koaagulasi perubahan inilah yang di sebut denaturasi. Protein dalam bentuk alamiahnya di sebut protein asli, setelah denaturasi di sebut protein tedenaturasi.
8. Penggolongan Protein
Berdasarkan Komposisi Kimia
- Protein sederhana → terdiri atas gugus amino dan tidak aa gugus kimia lain.
- Protein konjugasi ( Prostetik ) → terdiri atas rantai polipeptida yang terikat gugus kimia lain
Berdasarkan Bentuk
- Protein Globular → Rantai polipeptidanya berlipat rapat menjadi bentuk bulat padat
- Protein Serabut → Serabut panjang tidak berlipat menjadi globular
Berdasarkan Fungsi biologis- Enzim
- Protein Transport
- Protein Nutrien
- Protein Kontraktil
- Protein Struktur
- Protein Pertahanan
- Protein Pengatur
- Reaksi Pengenalan Protein
- Uji Nintridin
- Uji Biuret
- Uji Xantopotreat
- Uji Belerang
MAKALAH KIMIA | LIPID
Lipid merupakan subtansi biologi yang tidak larut dalam air, tetapi larut dalam pelarut-pelarut organik yang kurang polar
1). Lemak
a. Struktur dan tata nama lemak
Lemak yang terbentuk dari sejenis asam karboksilat ( R, = R2 = R3 ) di sebut lemak sederhana, sedangkan dari dua atau tiga jenis asam di sebut lemak campuran. Umunya molekul lemak terbentuk dari dua atau lebih macam asam karboksilat. Penanaman lemak dimulai dengan kata gliseril yang diikuti oleh nama asam lemaknya
b. Perbedaan lemak dan minyak
Lemak yang berwujud cair ( minyak ) mengandung asam lemak tak jenuh, sedangkan lemak yang berwujud padat lebih banyak mengandung asam lemak jenuh
c. Bilangan Iodin
Derajat ketidak jenuhan dinyatakan oleh bilangan Iodin yaitu jumlah gram Iodin yang dapat di serap oleh 100gr lemak untuk reaksi penjenuhannya
d. Reaksi-reaksi lemak dan minyak
- Hidrolisis
- Penyabunan
- Hidrogenesi minyak
e. Fungsi Lemak da Sumbernya
- Fungsi Lemak → Sumber energi dan cadangan makanan
- Sumbernya → Daging, susu, keju, kacang-kacangan
2). Fosfolipid
Merupakan ester dari gliserol, tetapi hanya dua gugus –OH dari gliserol itu yang diganti oleh gugus asil ( Asam Karbosilat ), sedangkan gugus –OH yang ketigadiganti oleh asam Fosfat yang selanjutnya terikat pada suatu alkohol yang mengandung nitrogen
3). Steroid
Steroid bukan dari golongan ester, tetapi mempunyai kesamaan sifat denganfosfolipid yaitu amfifilik, stroid yang paling banyak terdapat dalam tubuh manusia yaitu kolesterol. Zat itu merupakan bahan baku membuat garam empedu, salah satu dari empat vitamin D dan beberapa hormon. Garam-garam empedu mengemulsikan lemak yang kita makan sehingga mempermudah proses pencernaan dan penyerapannya.
MAKALAH KIMIA | KOROSI
Korosi adalah reaksi redoks antara logam dengan berbagai zat di lingkungannya yang menghasilkan senyawa yang tak di kehendaki. Korosi biasa di sebut pengkaratan, contoh yang lazim adalah pengkaratan besi. Pada peristiwa korosi, logam mengalami oksidasi, sedangkan oksigen ( Udara ) mengalami reduksi, karat logam pada umumnya adalah berupa oksida atau karbonat.
Faktor-faktor yang menyebabkan korosi besi. Karena adanya oksigen ( Udara ) dan air.
Cara-cara pencegahan korosi besi antara lain :
- Mengecat
- melumuri dengan oli atau gembuk
- di salut dengan plastik
- Tin plating ( pelapisan dengan timah )
- Galvanisasi ( Pelapisan dengan Zink )
- Cromium Plating (pelapisan dengan kromium )
- Sacrifical Protection ( Pengorbanan Anode )
Korosi Aluminium
Aluminium, Zink dan Kromium merupakan logam yang lebih aktif dari pada besi namun logam-logam ini lebih awet, karena pengkaratan terhenti setelah lapisan tipis oksida terbentuk. Lapisan ini dapat dibuat tebal melalui elektrolisis proses yang di sebut anodizing. Aluminium yang telah mengalami proses ini di gunakan untuk membuat panci, kusen, pintu dan jendela. Lapisan oksida aluminium lebih mudah di cat dan memberi efek warna yang lebih terang.
MAKALAH KIMIA | REAKSI REDOKS
1). Metode Biloks ( Bilangan Oksidasi )
a) Reaksi Ion
Langkah-langkah yang harus di tempuh dalam penyetaraan reaksi, sebagai berikut :
- Tentukan unsur yang mengalami perubahan Biloks
- Setarakan unsur yang mengalami perubahan biloks dengan memberi koefisien yang sesuai.
- Tentukan jumlah penurunan biloks dari oksidator dan jumlah penambahan biloks dari reduktor. jumlah perubahan biloks = jumlah atom yang terlibat di kalikan dengan perubahan biloksnya.
- Samakan jumlah perubahan biloks tersebut dengan memberikan koefisien yaang sesuai
- Setarakan muatan dengan menambah ion H+ ( Dalam Suasana Asam ), atau ion OH- ( Dalam Suasana Basa )
- Setarakan atom H dengan menambahkan H2O
Contoh Soal :
Setarakan reaksi redoks berikut :
Zn + NO– 3 → ZnO22– + NH3 ( Suasana Basa )
Jawab :
Langkah 1 : Zn dan N
Langkah 2 : Zn + NO– 3 → 2n O22– + NH3
Langkah 3 : Unsur Zn = Dari 0 menjadi + 2 bertambah 2 Unsur N = Dari +5 menjadi – 3 berkurang 8
Langkah 4 : 8 Zn + 2No– 3 → 8ZnO22– + 2NH3
Langkah 5 : 8Zn + 2No3– → 8ZnO22– + 2NH3 – 2 – 16
Langkah 6 : 14oH– + 8Zn + Zno– 3 → 8ZnO22– + 2NH3 + 4H2O
b). Reaksi Rumus
Langkah-langkah yang harus di tempuh dalam cara ini adalah sebagai berikut :
- Tentukan unsur yang mengalami perubagan biloks. Tuliskan biloks tersebut tepat di atas lambang atomnya masing-masing
- Setarakan unsur yang mengalami perubahan biloks dengan memberi koefisien yang sesuai
- Tentukan jumlah penurunan biloks dari oksidator ( yang mengalami reduksi ) dan jumlah pertambahan bilangan oksidasi dari reduktor ( yang mengalami oksidasi )
- Samakan jumlah perubahan bilangan oksidasi reduktor dan oksidator dengan memberi koefisien yang sesuai
- Setarakan unsur-unsur yang lainnya dalam urutan kation ( Logam ), anion ( Nonlogam ) hidrogen dan terakhir oksigen ( KAHO ).
Contoh soal :
Tentukan reaksi redoks berikut :
Zn + HNO3 → Zn ( NO3 )2 + NH4 NO3 + H2O
Jawab :
Langkah 1 : Znº + HNO3 → Zn+2 (NO3 )2 + NH4 NO3 + H2O
Langkah 2 : Zn + HNO3 → Zn ( NO3 )2 + NH4 NO3 + H2O
Langkah 3 : Znº → Zn+2 Bertambah 2 Zn+5 → N-3 Bertambah 8
Langkah 4 : 8 Zn + 2HNO3 → 8Zn ( NO3 )2 + 2NH4NO3 + H2O
Langkah 5 : Kation : 8Zn + 2HNO3 → 8Zn ( NO3 )2 + 2NH4NO3 + H2O
Anion : 8Zn + 20HNO3 → 8Zn ( NO3 )2 + 2NH4NO3 + H2O
Hidrogen : 8Zn + 20HNO3 → 8Zn ( NO3 )2 + 2NH4NO3 + 6H2O
2). Metode setengah reaksi ( Ion – Elektron )
Proses penyetaran berlangsung menurut langkah-langkah sebagai berikut :
- Tuliskan kerangka dasar dari setengah reaksi reduksi dan reaksi oksidasi secara terpisah dalam bentuk reaksi ion
- Masing-masing setengah reaksi di setarakan dengan urutan sebagai berikut :
- Setarakan atom unsur yang mengalami perubahan bilangan oksidasi
- Setarakan Oksigen dan Hidrogen
- Apabila terdapat spesi lain selain unsur yang mengalami perubahan biloks, oksigen dan hidrogen, maka petaraan di lakukan dengan menambahkan spesi yang bersangkutan pada ruas lainnya.
- Setarakan muatan dengan menambahkan elektron pada ruas yang jumlah muatannya lebih besar.
3). Samakan jumlah elektron yang di serap pada setengah reaksi reduksi dengan jumlah elektron yang di bebaskan pada setengah reaksi oksidasi dengan cara memberi koefisien yang sesuai, kemudian jumlahkam kedua ruas setengah reaksi tersebut.
MAKALAH KIMIA | KOLOID
a. Koloid
Pertama kali di perkenalkan oleh thomas graham berdasarkan pengamatannya terhadap gelatia yang merupakan kristal namun sulit mengalami difusi, oleh karena itu, zat semacam gelatia ini kemudian di sebut koloi. Koloid di sebut juga dispersi koloid atau sistem koloid sebenarnya merupakan sistem dengan ukuran partikel yang lebih besar dari larutan tetapi lebih kecil daripada suspensi. Ukuran koloid yaitu 1 nm sampai 100 nm. Contoh koloid antara lain santan, air susu dan lem, tetapi beberapa koloid tampak seperti larutan misalnya larutan kanji yang encer, agar-agar yang masih cair dan air teh. Beberapa koloid dapat berpisah bila didiamkan dalam waktu yang relatif lama meskipun tidak semuanya, misalnya koloid belerang dalam air dan santan. Dan koloid lain yang sukar berpisah antara lain lem, cat dan tinta. Koloid yang terjadi dari dispersi zat cair di dalam medium pendispersi cair di sebut dengan emulsi.
b. Sifat-sifat Koloid
- Efek Tyndall
- Gerak Brown
- Adsorpsi
- Koagulasi
Peristiwa yang dapat menimbulkan koagulasi antara lain :
- Pencampuran koloid yang berbeda muatan
- Adanya Elektrolit
- Kestabilan Koloid
Untuk menjaga kestabilan koloid, dapat dilakukan beberapa cara antara lain :
- Menghilangkan muatan koloid
- Penambahan stabilisator koloid
MAKALAH KIMIA | GUGUS FUNGSI
1). Pengertian gugus fungsi
Gugus fungsi adalah atom atau kelompok atom yang paling menentukan sifat suatu senyawa
SIFAT | ETANA | ETANOL | METANOL |
Wujud pada suatu kamar
Titik didih Di campur dengan natrium Kelarutan dalam air Dapat terbakar | gas
– 89ºC Tidak bereaksi Tidak larut Ya | Cair
78ºC Bereaksi Larut sempurna Ya | Cair
65ºC Bereaksi Larut sempurna Ya |
a. Gugus Fungsi – OH ( Alkohol )
Beberapa Contoh gugus fungsi
NO | GUGUS FUNGSI | GOLONGAN SENYAWA |
1 2 3 4 5 6 7 | – OH – – O – O – C – H O – C – O – C – OH O C – C – OR – X | Alk ohol Eter Aldehida Keton Asam Karboksilat Ester Halida |
b. Gugus Fungsi – O – ( Eter )
Mempunyai struktur R – O – R , Salah satu eter yaitu dietil eter ( C2Hs – O – C2Hs). Digunakan sebagai obat bius. Penggunaan lain dari eter adalah sebagai pelarut.
c. Gugus fungsi – C – H atau – CHO ( Aldehida )
Contohnya adalah metanol atau formaldehida tang terdapat dalam formalin. Bahan yang digunakan untuk mengawetkan preparat biologi atau mayat
d. Gugus Fungsi – CO – ( Keton )
Contohnya adalah aseton, suatu cairan yang biasa digunakan para wanita untuk membersihkan cat kuku
e. Gugus Fungsi – COOH ( Asam karboksilat )
Contohnya adalah asam asetat ( CH3CooH ) yang terdapat dalam cuka makan.
f. Gugus Fungsi – CooR ( Ester )
Yang banyak digunakan sebagai essen, lemak dan minyak juga tergolong Es
g. Gugus Fungsi – X ( Halogen )
Disebut juga Haloalkana. Gugus X adalah atom Halogen yaitu F, Cl, Br atau I. Monohaloalkana di sebut juga alkil Halida. Haloalkana di gunakan sebagai bahan dasar pembuatan plastik dan sebagai pelarut. Contoh, Freon yang digunakan sebagai fluida kerja dalam mesin pendingin.
MAKALAH KIMIA | KEISOMERAN
Senyawa – senyawa yang mempunyai rumus molekul yang sama di sebut Isomer. Keisomeran karena perubahan struktur di sebut keisomeran struktur, sedangkan keisomeran karena perubahan konfigurasi di sebut keisomeran ruang. Keisomeran struktur dapat berupa keisomeran kerangka, posisi dan fungsi. Sedangkan keisomeran ruang dapat berupa keisomeran geometris dan optis.
1. Keisomeran rangka. Mempunyai rumus molekul dan gugus fungsi sama, namun rantai induk berbeda.
2. Keisomeran posisi. Mempunyai rumus molekul, gugus fungsi dan kerangka yang sama namun berbeda letak ( Posisi ) gugus fungsinya.
3. Keisomeran gugus fungsi. Mempunyai rumus molekul yang sama, namun berbeda gugus fungsi. Terdapat 3 pasangan Homolog yang mempunyai rumus yang sama yaitu :
- Alkohol dengan Alkoksialkana mempunyai rumus umum CnH2n+2O
- Alkanal dengan Alkanol, mempunyai rumus umum CnH2nO
- Asam Alkanoat dengan Alkil alkanoat, mempunyai rumus umum CnH2nO2
- Menentukan jumlah isomer struktur
Jumlah isomer struktur yang dapat terbentuk dari suatu senyawa bergugus fungsi tunggal dapat ditentukan berdasarkan jumlah kemungkinan gugus alkil yang dapat di bentuk oleh seyawa itu.
- Alkohol CnH2n+2O. Mempunyai struktur umum R – OH. Jadi, jumlah kemungkinan isomer alkohol sama dengan jumlah kemungkinan gugus alkilnya ( R )
- Alkoksialkana, CnH2n+2O atau R – O – R. Atom karbon dalam molekul eter terbagi dalam dua gugus alkil. Jumlah kemungkinan isomer sama dengan jumlah kombinasi dari kedua gugus alkil tersebut.
- Alkanal, CnH2nO atau R – CHO. satu atom karbon dalam alkanal menjadi bagian dari gugus fungsi sisanya merupakan gugus alkil. Jumlah isomer bergantung pada jumlah kemungkinan gugus alkilnya.
- Alkanon, CnH2nO atau R – CO – R. satu atom karbon dalan alkanon menjadi bagian dari gugus fungsi, sisanya + bagi dalam dua gugus alkil. Jumlah isomer bergantung pada jumlah kemungkinan kombinasi gugus alkilnya
- Asam Alkanoat, CnH2nO2 atau R – COOH. Jumlah kemungkinan isomer asam alkanoat sama dengan alkanot yang setara
- Alkil alkanoat, CnH2nO2 atau R – COOR
- Halo Alkana, CnH2n+1 X atau R – X
Jumlah kemungkinan isomer haloalkana sama dengan alkanol yang sesuai
4. Keisomeran Geometris.Tergolong isomer ruang, mempunyai rumus molekul dan struktur yang sama. Keisomeran ini terjadi karena perbedaan konfigurasi molekul. Keisomeran geometris mempunyai dua bentuk yang di tandai dengan :
Cis : Gugus sejenis terletak pada sisi yang sama
Trans : Gugus sejenis terletak berseberangan
5. Keisomer Optis
Bidang getar di sebut bidang polarisasi. Alat untuk mengubah cahaya biasa menjadi cahaya terkutub di sebut polarisator. Berbagai jenis senyawa karbon menunjukkan kegiatan optis yaitu dapat memutarkan bidang polarisasi, senyawa – senyawa yang dapat memutar bidang polarisasi di sebut optis aktif. Keisomeran ini berkaitan dengan sifat optis contohnya 2 – Butanol. Mempunyai 2 isomer optis yaitu d – 2 Butanol dan L – 2 – Butanol.
Menurut Lebel dan Vanf Hoff, keisomeran optis di sebabkan adanya atom karbon asimetris dalam molekul yaitu atom c yang terikat pada 4 gugus yang berbeda. Senyawa yang mempunyai atom karbon asimetris bersifat kiral, dua isomer yang merupakan bayangan cermin satu dengan yang lainnya disebut enansiomer. Isomer – isomer yang bukan enansiomer disebut diastereoisomer. Sudut putaran di tentukan melalui percobaan dengan alat polarimeter. Campuran ekimolar dua enansiomer disebut campuran rasemat dan bersifat optis tak aktif.
MAKALAH KIMIA | REAKSI – REAKSI SENYAWA KARBON
1. Berbagai jenis reaksi senyawa karbon
Reaksi senyawa karbon merupakan pemutusan dan pembentukan ikatan kovalen. Jenis senyawa karbon yaitu subtitusi, adisi, eliminasi dan redoks
a. Subtitusi
pada reaksi subtitusi dimana atom atau gugus atom yang terdapat dalam suatu molekul di gantikan oleh atom atau gugus atom lain
b. adisi
pada reaksi adisi dimana molekul senyawa yang mempunyai ikatan rangkap berubah menjadi ikatan tunggal
c. Eliminasi
pada reaksi eliminasi dimana molekul senyawa berikatan tunggla berubah menjadi senyawa berikatan rangkap dengan melepas molekul kecil.
d. reaksi redoks
adalah reaksi yang di sertai perubahan bilangan oksidasi
2. Reaksi – reaksi Alkohol
Atom karbon primer adalah atom karbon yang terikat langsung pada satu atom karbon yang lain, atom karbon sekunder terikat langsung pada dua atom karbon yang lain dan seterusnya. Berdasarkan jenis atom yang mengikat gugus – OH Alkohol di bedakan menjadi alkohol primer – OH pada atom karbon primer dan seterusnya
a. reaksi dengan logam aktif atom H dari gugus – H dapat disubtitusi oleh logam aktif misalnya matrium dan kalium
b.subtitusi gugus – OH oleh halogen gugus – OH dapat di subtitusi oleh atom halogen bila di reakskan dengan HX pekat, atau PXs ( X = Halogen )
c.Oksidasi Alkohol. Dengan zat – zat pengoksidasi sedang seperti larutan K2Cr2O dalam lingkungan Asam, Alkohol teroksidasu sebagai berikut :
- alkohol primer membentuk aldehida dan dapat teroksidasi lebih lanjut membentuk asam karboksilat.
- alkohol sekunder membentuk keton
- alkohol tersier tidak teroksidasi
Dalam oksidasi alkohol, sebuah atom oksigen dari oksidator akan menyerang atom H – Karbinol
d. Pembentukan Ester ( Esterifikasi ). alkohol bereaksi dengan asam karboksilat membentuk ester dan air
e. dehiodrasi alkohol. jika di panaskan bersama asam sulfat pekat akan mengalami dehidrasi ( melepas molekul air ) membentuk estr atau alkena
3. Reaksi – Reaksi Eter
a. Pembakaran. eter mudah terbakar membentuk gas karbon dioksida dan uap air
b. reaksi logam aktif. eter tidak bereaksi dengan logam natrium ( Logam aktif )
c. Reaksi dengan PCLs. eter bereaksi dengan PCLs, tetapi tidak membebaskan HCL
d. Reaksi dengan Hidrogen Halida ( HX )
Eter terurai oleh asam halida, terutama HI
4. Membebaskan Alkohol dengan Eter
Alkohol dan eter merupakan isomer fungsi dengan rumus umum CnH2n+2O, tetapi kedua homolog ini mempunyai sifat yang berbeda nyata, baik sifat fisik maupun sifat kimia
Perbandingan titik cair dan titik didih antara eter dan alkohol
Eter | Titik Cair | Titik Didih | Alkohol | Titik Cair | Titik Didih |
- Metil Eter - Etil Eter - Propil Eter | - 140 - 116 - 122 | - 24 34,6 91 | Etanol 1 – Butanol 2 - Butanol | - 115 - 90 - 52 | 78,3 117,7 155,8 |
Secara kimia, alkohol dan etr dapat dibedakaan berdasarkan reaksinya dan logam natrium dan posforus pentaklorida.
- alkohol bereaksi dengan natrium membebaskan H, sedangkan eter tidak bereaksi
- alkohol bereaksi dengan PCLs menghasilkan gas HCL, sedangkan eter tidak menghasilkan HCL.
5. Reaksi – Reaksi Aldehida
a. Oksidasi
Aldehida merupakan reduktor kuat sehingga dapat mereduksi oksidator – oksidator lemah. Pereaksi Tollens dan Fehling adalah dua contoh oksidator lemah yang merupakan pereaksi khusus untuk mengenali aldehida. Pereaksi ini terbuat dari perak nitrat dalam amonia dengan cara menetesi larutan perak nitrat kedalam amonia, sedikit demi sedikit hingga endapan yang mula – mula terbentuk larut kembali. Jadi pereaksi Tollens mengandung perak sebagai ion kompleks, yaitu [ Ag (NH3)2 ]
b. Adisi Hidrogen
Ikatan rangkap – C = O dari gugus fungsi aldehida dapat di adisi hidrogen membentuk suatu alkohol primer. Adisi hidrogen menyebebkan penurunan biloks atom karbon gugus fungsi
c. Pembentukan Asetala dan Hemiasetala
Asetala merupakan senyawa karbon dengan dua gugus eter yang terikat pada suatu atom primer, sedangkan Hemiasetala merupakan gugus yang terikat terdiri dari satu gugus eter dan satu gugus alkohol
6. Sifat – Sifat Keton
a. Oksidasi
merupakan reduktor yang lemah dari pada aldehida. Aldehida dan keton dapat di bedakan dengan menggunakan pereaksi – pereaksi tersebut :
Aldehida + Pereaksi Tollins → Cermin perak
Keton + Pereaksi Tollins → Tidak ada reaksi
Aldehida + Pereaksi Fehling → Endapan merah bata
Aldehida + Pereaksi Fehling → Tidak ada reaksi
b. Reduksi
menghasilkan alkohol sekunder
c. Pembentukan ketala dan hemiketala
Ketala adalah senyawa karbon dalam mana dua gugus eter terikat pada satu atom karbon sekunder. Jika gugus yang terikat itu adalah satu gugus eter dan satu gugus alkohol maka di sebut hemiketala
7. Menbedakan Aldehida dengan Keton
Aldehida dengan keton merupakn senyawa fingsional tetapi mempunyai sifat – sifat yang berbeda. Perbedaan antara aldehida dengan keton yaitu dengan teori Tollens atau pereaksi Fehling, dimana Aldehida bereaksi positif dengan kedua pereaksi tersebut, sedangkan keton bereaksi negatif.
8. Reaksi – Reaksi Asam Karboksilat
a. Reaksi penetralan
Asam karboksilat bereaksi dengan basa membentuk garam dan air. Garam natrium atau kalium dari asam karboksilat membentuk sabun. Sabun natrium juga di kenal juga sabun keras, sedangkan sabun kalium disebut juga sabun lunak. Sebagai contoh adalah Natrium Stearat dan kalium stearat. Asam alkanoat merupakan asam lemah. Semakin panjang rantai alkilnya, semakin lemah asamnya. Asam format adalah yang paling kuat. Asam format mempunyai Ka = 1,8 x 10-4. Oleh karena itu kalium dan natrium mengalami hidrolisis parsial dan bersifat basa.
b. Reaksi pengesteran
asam karboksilat bereaksi dengan alkohol membentuk ester yang disebut Esterifikasi ( Pengesteran )
9. Reaksi – Reaksi Ester
Hidrolisis
Ester terhidrolisis dengan pengaruh asam dan membentuk alkohol dan asam karboksilat. Reaksi ini merupakan kebalikan dari pengesteran
10. Reaksi – Reaksi Haloalkana
Haloalkana dibuat melalui proses subtitusi, dapat dibuat bahan kimia lainnya melalui berbagai reaksi khususbya subtitusi dan eliminasi
a. Subtitusi
- Atom Halogen dari Haloalkana dapat diganti oleh gugus – OH jika Haloalkana do reaksikan dengan suatu larutan basa kuat, misalnya dengan NaOH.
b. Eliminasi Hx.
- Haloalkana dapat mengalami eliminasi Hx jika di panaskan bersama suatu alkoksida.
MAKALAH KIMIA - TATA NAMA SENYAWA TURUNAN ALKANA
Bagian depan ( alk ) menyatakan jumlah atom karbon dalam molekulnya
1 = Met
2 = Et
3 = Prop
4 = But
5 = Pent
6 = Heks
7 = Hept
8 = Okt
9 = Non
10 = Dek
Bagian tengah ( an, en, atau un ) menyatakan jenis ikatan karbon
an = Jenuh
en = Ikatan rangkap dua
un = Ikatan rangkap tiga
Bagian akhir menyatakan gugus fungsi
a = Hidrokarbon ( Tanpa gugus fungsi )
ol = Alkohol
al = Aldehida
om = Keton
oat = Asam Karboksilat
1. Tata nama Alkohol
- Nama IUPAC. Nama Alkohol diturunkan dari nama alkana yang sesuai dengan mengganti akhiran a menjadi ol
- Nama lazim. selain nama IUPAC, alkohol sederhana juga mempunyai nama lazim yaitu alkil alcohol
2. Tata nama Alkoksialkana ( Eter ). Nama IUPAC. Dalam hal ini eter di anggap sebagai turunan alkana dengan satu atom H alkana itu di ganti oleh gugus alkohol ( - OR ). Jika gugus alkilnya berbeda, maka alkil yang terkecil yang di anggap sebagai gugus alkoksi, sedangkan gugus lainnya sebagai alkana ( sebagai induk ). Nama lazim. Nama lazim Eter adalah alkil alkil eter, yaitu nama kedua gugus alkil diikuti kata eter. Eter kedua gugus alkilnya sama dinamai dialkil eter. Urutan penulisan gugus alkilnya tidak harus berdasarkan abjad
3. Tata namaAlkanal ( Aldehida )
- Diturunkan dari nama alkana sesuai dengan mengganti akhiran a menjadi al
- Nama lazim. Diturunkan dari asam karboksilat yang sesuai dengan mengganti akhiran at menjadi aldehida dan membuang kata asam.4. Tata nama Alkanon
4. Tata nama IUPAC.
Diturunkan dari nama alkana dengan mengganti akhiran a menjadi on. Penamaan alkanon bercabang adalah sebagai berikut :- Rantai induk adalah rantai terpanjang yang mengandung gugus fungsi – CO –
- Penomoran di mulai dari salah satu ujung rantai induk, sehingga posisi gugus fungsi mendapat nomor terkecil
- Penulisan sama dengan Alkohol
b. Nama Lazim. Nama lazin keton adalah alkil alkil keton – kedua gugus alkil disebut secara terpisah kemudian di akhiri dengan kata keton
5. Tata nama Asam Alkanoat
a. Tata nama IUPAC
Diturunkan dari nama alkana yang sesuai dengan mengganti akhiran a menjadi oat, dan memberi awalan asam. Tata nama asam alkanoat bercabang, pada dasarnya seperti tata nama aldehida Sebagai berikut :
- Rantai induk adalah rantai terpanjang yang mengandung gugus karboksil
- penomoran dimulai dari atom c gugus fungsi ( atom c gugus karboksil )
- penulisan nama sama seperti senyawa bergugus fungsi yang lain.
Asam karboksilat yang mempunyai dua gugus disebut alkanodioat, sedangkan yang mempunyai tiga gugus disebut asam alkanatriot dan seterusnya.
b. Nama lazim
c. Nama Lazim beberapa asam karboksilat
NO | RUMUS BANGUN | NAMA IUPAC | NAMA LAZIM |
1 2 3 4 5 6 7 8 9 | HcooH CH3CooH CH3CH2CooH CH3(CH2)2CooH CH3(CH2)3CooH CH3(CH2)3CooH CH3(CH2)14CooH CH3((CH2)16CooH HooCCooH | Asam Metanoat Asam Etanoat Asam propanoat Asam Butanoat Asam Pentanoat Asam Dodekanoat Asam Heksadekanoat Asam Oktadekanoat Asam Etanadioat | Asam Format Asam Asetat Asam Propinoat Asam Butirat Asam Valerat Asam Laurat Asam Palmitat Asam Stearat Asam Oksalat |
6. Tata nama Alkil Alkanoat ( Ester )
Yang disebut Alkil pada nama itu adalah gugus karbon yang terikat pada atom O ( gugus R’ ), sedangkan alkanoat adalah gugus R – Coo – . Atom C gugus fungsi masuk kedalam bagian alkanoat
7. Tata nama Haloalkana
Haloalkana adalah senyawa turunan alkana dengan satu atau lebih atoh H digantikan dengan atom hidrogen, aturan penamaan haloalkana sebagai berikut :
- rantai induk adalah rantai terpanjang yang mengandung atom halogen
- penomoran dimulai dari salah satu ujung, sehingga atom halogen mendapat nomor terkecil
- Nama Halogen ditulis sebagai awalan dengan sebutan bromo, kloro, fluoro dan iodo
- terdapat lebih dari sejenis halogen maka prioritas penomoran di dasarkan pada kereaktifan halogen
- jika terdapat dua atau lebih atom halogen sejenis dinyatakan dengan awalan di, tri, dan seterusnya
- jika terdapat rantai samping ( cabang alkil ), maka halogen didahulukan
MAKALAH KIMIA - BENZENA DAN TURUNANNYA
1. Struktur Kekule
Rumus molekul benzena ( C6 H6 ) memperlihatkan ketidakjenuhan. Untuk mejelaskan sifat-sifat benzena, maka pada tahun 1865 kekule mengajukan struktur lingkar enam dengan tiga ikatan rangkap yang berkonjugasi dan selalu berpinda-pindah
2. Ikatan Sigma dan ikatan PHI
Menurut teori ikatan Val, Orbital molekul terbentuk dari penumpang tindihan orbital-orbital atom. Penumpang tindihan orbital-orbital atom dapat terjadi menurut dua cara yaitu :
- Penumpang tindihan ujung dengan ujung, ikatan kovalen yang terbentuk dengan penumpang tindihan jenis ini disebut ikatan sigma
- Penumpang tindihan sisi dengan sisi, ikatan kovalen yang terbentuk dengan tipe ini disebut ikatan
PHI.Ikatan pertama yang terjadi antara dua atom selalu berupa ikatan sigma, sedangkan ikatan kedua dan ketiga adalah ikatan PHI. Jadi,
- Ikatan kovalen tunggal adalah ikatan sigma
- Ikatan rangkap terdiri dari satu ikatan sigma dan satu ikatan PHI
- Ikatan rangkap tiga terdiri dari satu ikatan sigma dan dua ikatan PHI
Hibridasi pada atom karbonDalam pembentukan senyawa, atom karbon dapat mengalami tiga macam hibridasi, yaitu 3p3, 3p2 dan sp. Setiap ikatan sigma memerlukan 1 orbital hibrida
- Jika karbon membentuk 4 ikatan sigma, maka tipe hibridasinya adalah 3p3
- Jika karbon membentuk 3 ikatan sigma, maka tipe hibridasinya adalah 3p2
- Jika karbon membentuk 2 ikatan sigma, maka tipe hibridasinya adalah 3p
Sifat – Sifat Benzena
1. Subtitusi pertama
- Halogenesi → Benzena bereaksi langsung dengan halogen dengan katalisator besi ( III ) halide
- Nitrasi → Benzena bereaksi dengan asam nitrat pekat dengan katalisator asam sulfat pekat membentuk nitrobenzene
- Sulfonasi → Terjadi apabila benzena di panaskan dengan asam sulfat pekat
- Alkilasi → Alkilbenzena dapat terbentuk jika benzena direaksikan dengan alkil halida dengan katalisator aluminium kloroda ( AlCl3 )
2. Subtitusi kedua
Pengaruh subtituen pertama terhadap subtitusi kedua
Pengaruh Orta para Pengaruh Meta
- NH2 - NHR, NR2 O
- CR
- OH - CO2R
- OR - SO3H
- O – CHO
- NHCR - CO2H
- C6H6 ( Aril ) – CN
- R ( Alkil ) - NO2
- X : ( Mendeaktifkan ) - NR3+
Kegunaan dan dampak dari benzena dan beberapa turunannya
- Benzena → Sebagai pelarut berbagai jenis zat, bahan dasar membuat stirena dan nilon 66
- Fenoln → Sebagai antiseptic
- Asam Salisilat → Sebagai obat dengan nama spirin ataui asetosal
- Asam Benzoat → Sebagai pengawet pada berbagai makanan olahan
- Anilina → Bahan dasar membuat zat – zat diaso.
MAKALAH KIMIA - POLIMER
Berbagai barang yang dibuat dari bahan plastik disebut polimer. Polimer yang lazim adalah polietilena, polistirena dan polivinilklorida ( PVC ). Polimer terdiri dari molekul – molekul besar disebut makromolekul. Unit pembangun polimer yang berasal dari molekul sederhana disebut monomer. Reaksi pembentukan polimer dari monomernya disebut polimerasasi
- Polimerasasi Adisi. Terjadi pada monomer yang mempunyai ikatan rangkap. Polimerasasi adisi adalah perkaitan langsung antarmonomer berdasarkan reaksi adisi ( Dapat berlangsung dengan bantuan katalisator )
- Polimerasasi Kondensasi. Monomer – monomernya saling berkaitan dengan melepas molekul kecil, seperti H@) dan CH3OH. Polimerasasi ini terjadi pada monomer yang mempunyai gugus fungsi pada kedua ujungnya.
Penggolongan Polimer
1. Berdasarkan asalnya
- Polimer alam yaitu polimer yang terdapat di alam
- Polimer sintetis yaitu polimer yang dibuat di pabrik dan tidak terdapat di alam
Beberapa contoh polimer alam
POLIMER | MONOMER | POLIMERASASI | SUMBER TERDAPATNYA |
Protein Amilum Selulosa Asam Nukleat Karet Alam | Asam Amino Glukosa Glukosa Nukleotida Isoprena | Kondensasi Kondensasi Kondensasi Kondensasi Adisi | Wol / Sutera Beras, Gandum, Lainnya Kayu ( Tumbuh – tumbuhan DNA, RNA Getah pohon karet |
POLIMER | MONOMER | POLIMERASASI | SUMBER TERDAPATNYA |
Polietilena PVC Polipropilena Teflon | Etena Vinilklorida Propena Tetrafluoroetilena | Adisi Adisi Adisi Adisi | Plastik Pelapis lantai, pipa Tali plastik, botol plastik Panci anti lengket |
2. Berdasarkan jenis polimernya
- Homopolimer terbentuk dari satu jenis monomer. Contohnya : Polietilena, Polipropilena, Teflon
- Kopolimer terbentuk dari dua jenis atau lebih monomer. Contohnya : Nilon – 66 dan Dakran
3. Berdasarkan sifatnya terhadap panas
- Polimer termoplas adalah polimer yang melunak jika dipanaskan dan dapat dibentuk ulang.. contohnya : PVC, Polietilena
- Polimer termoseting adalah polimer yang tidak melunak jika dipanaskan dan tidak dapat dibentuk ulang. Contohya : Bakelit ( Plastik yang di gunakan untuk listrik )
Perbedaan antara polimer termoplas dan termoseting terletak pada strukturnya. Polimer termoplas terdiri atas molekul – molekul rantai lurus, sedangkan polimer termoseting terdiri atas ikatan silang antar rantai sehingga terbentuk bahan yang keras dan lebih kaku
Berbagai macam Polimer1. Karet Alam
- Karet alam adalah polimer dari isoprena. Getah pohon karet disebut lateks. Karet dikoagulasikan dari lateks dengan menggunakan asam format.
- Vulkanisasi
Karet dapat dipanaskan jika dimasak dengan belerang. Pengerasan terjadi karena terbentuk ikatan saling disulfida antar rantai. Proses ini disebut Vulkanisasi.
2. Karet Sintetis
- Polibutadiena. Mirip dengan karet alam namun tidak kuat dan tidak tahan terhadap bensin atau minyak
- Polikloroprena ( Neoprena ) Mempunyai daya tahan terhadap minyak dan bensin yang paling baik dibandingkan elastomer lainnya. Digunakan untuk membuat selang oli
3. SBR. Adalah kopolimer dari stirena ( 25% ) dan butadiena ( 75% ). Merupakan karet sintetis yang paling banyak digunakan dan diproduksi. Penggunaan SBR adalah untuk ban kendaraan bermotor.
4. Polipropilena. Untuk membuat kalung, tali, botol dan sebagainya
5. Teflon. Banyak yang dipakai sebagai gasket, pelapis tangki dipabrik kimia dan pelapis panci anti lengket.
6. PVC. Untuk membuat pipa, pelapis lantai, selang dan sebagainya
7. Polistirena. Untuk membuat gelas minuman ringan, isolasi, bahan untuk pengepakan dan kemasan makanan
8. Akrilat. Dikenal dengan nama flexiglass, digunakan untuk membuat baju “ WOL “, kaos kaki, karpet dan lain - lain
9. Bakelit. Digunakan untuk peralatan listrik
10. Nilon. Membuat tali, jala, parasut
11. Terilen. Digunakan sebagai tekstil
12. Resin urea – formaldehida dan melamin - formaldehida. Digunakan untuk perkakas makanan misalnya mangkuk dan piring.
Penanganan Limbah Plastik
- Daur ulang
- Incinerasi
- Plastic Biodegradabel
MAKALAH KIMIA - KARBOHIDRAT
1. Susunan dan penggolongan karbohidrat
terdiri dari karbon, hidrogen dan oksigen. Karbohidrat mempunyai rumus umum Cn ( H2O )m. rumus molekul glukosa misalnya dapat dinyatakan sebagai C6 ( H2O )6. nama lain karbohidrat adalah sakarida. Berdasarkan gugus fungsinya karbohidrat merupakan suatu poklihidroksialdehida
b. penggolongan karbohidrat
karbohidrat biasanya digolongkan menjadi monosakarida, disakarida dan polisakarida
2. Monosakarida - Dapat berupa aldesa dan ketosa
a. Konfigurasi monosakarida
- Struktur terbuka ( Alifatis )
- Struktur melingkar
b. Sifat –Sifat Monosakarida
- Kelarutan dalam air
- Mutarotasi
- Oksidasi
- Reduksi
c. Beberapa Monosakarida
- Glukosa
- Fruktosa
- Ribosa dan 2 – Deoksiribosa
3. Disakarida
Terbentuk dari dua molekul monosakarida. Ikatan menghubungkan unit – unit monosakarida dalam disakarida juga dalam polisakarida disebut ikatan Glikosida.
Sukrosa adalah gula pasir biasa. Terbentuk dari satu molekul glukosa dan satu molekul fruktosa. Ikatannya melibatkan gugus hemiasetal glukosa dan gugus hemiketal fruktosa
Terdiri atas dua molekul glukosa. Digunakan dalam makanan bayi. Maltosa tergolong gula pereduksi
c. Laktosa
terdiri dari satu molekul glukosa dengan satu molekul galaktosa. Secara komersial laktosa doperoleh sebagai hasil samping pabrik keju.
4. Polisakarida
a. Amilum
Amilum atau pati adalah polisakarida yang terapat dalam tumbuhan. Amilum dapat dipisahkan menjadi dua bagian yaitu amilosa dan amilopektin. Amilosa merupakan polimer rantai kurus yang terdiri dari 1000 atau lebih molekul glukosa, sedangkan amilopektrin merupakan polimer bercabang.
b. Glikogen
Molekul glikogen menyerupai amilopektrin tetapi lebih bercabang. Percabangan terjadi antara 6 – 12 unit glukosa. 1 molekul glikogen terdiri dari 1700 hingga 600.000 molekul glukosa
c. Selulosa
Selulosa merupakan polimer rantai lurus dari B – D – glukosa dengan ikatan B – (1, - 4 ). Panjang rantai berkisar dari 200 – 26.000 unit glukosa dapat tersusun rapat dan melintir seperti serat dalam benang.
5. Reaksi pengenalan karbohidrat
- Uji umum untuk karbohidrat adalah uji molisch
- Gula pereduksi, yaitu monosakarida dan disakarida dapat di tunjukkan dengan pereaksi fehling atau benedict.
- Amilum memberi warna biru – ungu dalam larutan iodin
MAKALAH KIMIA | LAJU REAKSI